Gaussian Rank Correlation and Regression

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Gaussian rank correlation estimator: robustness properties

The Gaussian rank correlation equals the usual correlation coefficient computed from the normal scores of the data. Although its influence function is unbounded, it still has attractive robustness properties. In particular, its breakdown point is above 12%. Moreover, the estimator is consistent and asymptotically efficient at the normal distribution. The correlation matrix obtained from pairwis...

متن کامل

Asynergistic Regression Based on Maximized Rank Correlation

The property of synergy and its detection are discussed. A response surface is said to possess synergy if it is monotone in each argument and its level curves are convex. Detecting this property is particularly useful in the study of combination drug therapies where the goal is enhanced response or diminished side effect. One way to detect synergy is to fit a surface with linear level curves un...

متن کامل

Analysis of Some Methods for Reduced Rank Gaussian Process Regression

While there is strong motivation for using Gaussian Processes (GPs) due to their excellent performance in regression and classification problems, their computational complexity makes them impractical when the size of the training set exceeds a few thousand cases. This has motivated the recent proliferation of a number of cost-effective approximations to GPs, both for classification and for regr...

متن کامل

Parallel Gaussian Process Regression with Low-Rank Covariance Matrix Approximations

Gaussian processes (GP) are Bayesian nonparametric models that are widely used for probabilistic regression. Unfortunately, it cannot scale well with large data nor perform real-time predictions due to its cubic time cost in the data size. This paper presents two parallel GP regression methods that exploit low-rank covariance matrix approximations for distributing the computational load among p...

متن کامل

Multivariate reduced rank regression in non-Gaussian contexts, using copulas

We propose a new procedure to perform Reduced Rank Regression (RRR) in nonGaussian contexts, based on Multivariate Dispersion Models. Reduced-Rank Multivariate Dispersion Models (RR-MDM) generalise RRR to a very large class of distributions, which include continuous distributions like the normal, Gamma, Inverse Gaussian, and discrete distributions like the Poisson and the binomial. A multivaria...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in econometrics

سال: 2022

ISSN: ['0731-9053']

DOI: https://doi.org/10.1108/s0731-90532021000043b012